## Gnetupendin C, a New Stilbene Dimer from the Lianas of Gnetum Pendulum

## Xiao Mei LI, Ying Hong WANG, Mao LIN\*

Institute of Materia Medica, Chinese Academy of Medical Sciences, Perking Union Medical College, Beijing 100050

**Abstract:** Gnetupendin C, a new dimer coupled by a resveratrol and an oxyresveratrol unit, was isolated from the lianas of *Gnetum pendulum* C.Y. Cheng (Gnetaceae). Its structure was established on the basis of spectroscopic evidence, especially 2D techniques.

Keywords: Gnetupendin C, Gnetum pendulum, Gnetaceae, resveratrol, oxyresveratrol, dimer.

Continuous investigation on stilbenoids from the lianas of *Gnetum pendulum*<sup>1</sup> resulted in the isolation of a new dimer, Gnetupendin C (1), a *cis*-2, 3-dihydrobenzofuran dimer of resveratrol and oxyresveratrol.



Gnetupendin C (1) was obtained as yellowish amorphous power,  $[\alpha]_{D}^{18}$  -220.0 (*c* 0.100, MeOH). UV (*c* 0.02, MeOH)  $\lambda_{max}$  (log  $\varepsilon$ ): 222 (4.5), 288 (sh), 310 (sh), 327 (4.4) nm. The high resolution EIMS, *m*/*z* 470.1344, agreed with a molecular formula of C<sub>28</sub>H<sub>22</sub>O<sub>7</sub> (requires 470.1366) and the <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra correspond to a dimer of resveratrol and oxyresveratrol. The <sup>1</sup>H NMR spectrum presented one set of ABX system signals for ring A<sub>1</sub>; one set of AB<sub>2</sub> system signals for ring A<sub>2</sub>; one set of A<sub>2</sub>B<sub>2</sub> system signals for ring B<sub>1</sub>; two meta-coupled protons for ring B<sub>2</sub> and two coupled doublets for two olefinic protons (**Table 1**). The HMBC spectrum (**Figure 1, a**) showed significant CH long-range correlations between H-6a/C-7a, H-7a/C-2a, 6a, 9a, H-8a/C-10(14)a, 13b, H-10b/C-12b, H-14b/C-12b, 13b, which suggested that the resveratrol unit and the oxyresveratrol unit were connected by a dihydrobenzofuran ring (B<sub>2</sub>). The connectivity was different from that of gnetuhainin A (**2**)<sup>2</sup>. In the NOESY spectrum (**Figure 1, b**), the NOEs between H-7a/H-8a, H-6a/H-10(14)a indicated a *cis* orientation of ring A<sub>1</sub> and A<sub>2</sub>, namely H-7a and H-8a were in *cis* orientation, Thus, the

relative structure of **1** was determined to be *rel*-(7a*R*, 8a*S*), as shown in **1**, it is a diastereoisomer of gnetulin D  $(3)^3$ .



Figure 1 CH long-range correlations from the HMBC spectrum (a) and NOE interactions from the NOESY spectrum (b) of 1.



**Table 1** <sup>1</sup>H and <sup>13</sup>C NMR spectra data for compound 1 ( $\delta$  in ppm, J in Hz)<sup>a</sup>

| Position | $^{1}\mathrm{H}$   | <sup>13</sup> C | Position | $^{1}\mathrm{H}$ | <sup>13</sup> C |
|----------|--------------------|-----------------|----------|------------------|-----------------|
| 1a       |                    | 116.2           | 1b       |                  | 129.9           |
| 2a       |                    | 155.1           | 2(6)b    | 7.45 d (8.4)     | 128.6           |
| 3a       | 6.27 d (2.1)       | 102.4           | 3(5)b    | 6.85 d (8.4)     | 116.3           |
| 4a       |                    | 158.0           | 4b       |                  | 158.0           |
| 5a       | 6.09 dd (2.1, 8.4) | 106.8           | 7b       | 7.13 d (16.2)    | 128.9           |
| 6a       | 7.45 d (8.4)       | 128.6           | 8b       | 6.99 d (16.2)    | 126.8           |
| 7a       | 6.03 d (8.1)       | 86.1            | 9b       |                  | 140.5           |
| 8a       | 4.66 d (8.1)       | 49.8            | 10b      | 6.75 br s        | 99.3            |
| 9a       |                    | 142.6           | 11b      |                  | 162.8           |
| 10(14)a  | 5.95 d (2.1)       | 108.1           | 12b      |                  | 117.4           |
| 11(13)a  |                    | 158.3           | 13b      |                  | 155.1           |
| 12a      | 5.81 t (2.1)       | 101.4           | 14b      | 6.60 d (1.5)     | 108.1           |

<sup>a</sup>Measured in CD<sub>3</sub>COCD<sub>3</sub> at 300MHz for <sup>1</sup>H NMR, 75 MHz for <sup>13</sup>C NMR, respectively.

## References

- 1. X. M. Li, Y. H. Wang, M. Lin, Phytochemistry. 2000 (submitted).
- 2. K. S. Huang, Y. H. Wang, R. L. Li, M. Lin, J. Nat. Prod., 2000, 63, 86.
- 3. A. P. Lins, M. N. D. S. Ribeiro, O. R. Gottlieb, H. E. Gottlieb, J. Nat. Prod., 1982, 45, 754.

Received 2 January, 2001